| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcun | GIF version | ||
| Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcdif.1 | ⊢ BOUNDED 𝐴 |
| bdcdif.2 | ⊢ BOUNDED 𝐵 |
| Ref | Expression |
|---|---|
| bdcun | ⊢ BOUNDED (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcdif.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
| 2 | 1 | bdeli 10637 | . . . 4 ⊢ BOUNDED 𝑥 ∈ 𝐴 |
| 3 | bdcdif.2 | . . . . 5 ⊢ BOUNDED 𝐵 | |
| 4 | 3 | bdeli 10637 | . . . 4 ⊢ BOUNDED 𝑥 ∈ 𝐵 |
| 5 | 2, 4 | ax-bdor 10607 | . . 3 ⊢ BOUNDED (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) |
| 6 | 5 | bdcab 10640 | . 2 ⊢ BOUNDED {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| 7 | df-un 2977 | . 2 ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} | |
| 8 | 6, 7 | bdceqir 10635 | 1 ⊢ BOUNDED (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 661 ∈ wcel 1433 {cab 2067 ∪ cun 2971 BOUNDED wbdc 10631 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 ax-bd0 10604 ax-bdor 10607 ax-bdsb 10613 |
| This theorem depends on definitions: df-bi 115 df-clab 2068 df-cleq 2074 df-clel 2077 df-un 2977 df-bdc 10632 |
| This theorem is referenced by: bdcpr 10662 bdctp 10663 bdcsuc 10671 |
| Copyright terms: Public domain | W3C validator |