| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsetindis | GIF version | ||
| Description: Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdsetindis.bd | ⊢ BOUNDED 𝜑 |
| bdsetindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
| bdsetindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
| bdsetindis.nf2 | ⊢ Ⅎ𝑦𝜑 |
| bdsetindis.nf3 | ⊢ Ⅎ𝑦𝜓 |
| bdsetindis.1 | ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) |
| bdsetindis.2 | ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) |
| Ref | Expression |
|---|---|
| bdsetindis | ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2219 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 2 | bdsetindis.nf0 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | nfralxy 2402 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 𝜓 |
| 4 | bdsetindis.nf1 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
| 5 | 3, 4 | nfim 1504 | . . 3 ⊢ Ⅎ𝑥(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) |
| 6 | nfcv 2219 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
| 7 | bdsetindis.nf3 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 8 | 6, 7 | nfralxy 2402 | . . . 4 ⊢ Ⅎ𝑦∀𝑧 ∈ 𝑥 𝜓 |
| 9 | bdsetindis.nf2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 10 | 8, 9 | nfim 1504 | . . 3 ⊢ Ⅎ𝑦(∀𝑧 ∈ 𝑥 𝜓 → 𝜑) |
| 11 | raleq 2549 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝑦 𝜓 ↔ ∀𝑧 ∈ 𝑥 𝜓)) | |
| 12 | 11 | biimprd 156 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝑥 𝜓 → ∀𝑧 ∈ 𝑦 𝜓)) |
| 13 | bdsetindis.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) | |
| 14 | 13 | equcoms 1634 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜒 → 𝜑)) |
| 15 | 12, 14 | imim12d 73 | . . 3 ⊢ (𝑦 = 𝑥 → ((∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → (∀𝑧 ∈ 𝑥 𝜓 → 𝜑))) |
| 16 | 5, 10, 15 | cbv3 1670 | . 2 ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥(∀𝑧 ∈ 𝑥 𝜓 → 𝜑)) |
| 17 | bdsetindis.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) | |
| 18 | 2, 17 | bj-sbime 10584 | . . . . 5 ⊢ ([𝑧 / 𝑥]𝜑 → 𝜓) |
| 19 | 18 | ralimi 2426 | . . . 4 ⊢ (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → ∀𝑧 ∈ 𝑥 𝜓) |
| 20 | 19 | imim1i 59 | . . 3 ⊢ ((∀𝑧 ∈ 𝑥 𝜓 → 𝜑) → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑)) |
| 21 | 20 | alimi 1384 | . 2 ⊢ (∀𝑥(∀𝑧 ∈ 𝑥 𝜓 → 𝜑) → ∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑)) |
| 22 | bdsetindis.bd | . . 3 ⊢ BOUNDED 𝜑 | |
| 23 | 22 | ax-bdsetind 10763 | . 2 ⊢ (∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
| 24 | 16, 21, 23 | 3syl 17 | 1 ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 [wsb 1685 ∀wral 2348 BOUNDED wbd 10603 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bdsetind 10763 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 |
| This theorem is referenced by: bj-inf2vnlem3 10767 |
| Copyright terms: Public domain | W3C validator |