| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nfalt | GIF version | ||
| Description: Closed form of nfal 1508 (copied from set.mm). (Contributed by BJ, 2-May-2019.) |
| Ref | Expression |
|---|---|
| bj-nfalt | ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1390 | . . . 4 ⊢ (Ⅎ𝑦𝜑 ↔ ∀𝑦(𝜑 → ∀𝑦𝜑)) | |
| 2 | 1 | albii 1399 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 ↔ ∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑)) |
| 3 | bj-hbalt 10574 | . . . . 5 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) | |
| 4 | 3 | alimi 1384 | . . . 4 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑦𝜑) → ∀𝑦(∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) |
| 5 | 4 | alcoms 1405 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑) → ∀𝑦(∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) |
| 6 | 2, 5 | sylbi 119 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ∀𝑦(∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) |
| 7 | df-nf 1390 | . 2 ⊢ (Ⅎ𝑦∀𝑥𝜑 ↔ ∀𝑦(∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) | |
| 8 | 6, 7 | sylibr 132 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |