| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > spimd | GIF version | ||
| Description: Deduction form of spim 1666. (Contributed by BJ, 17-Oct-2019.) |
| Ref | Expression |
|---|---|
| spimd.nf | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| spimd.1 | ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| spimd | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spimd.nf | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 2 | spimd.1 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜒))) | |
| 3 | spimt 1664 | . 2 ⊢ ((Ⅎ𝑥𝜒 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜒))) → (∀𝑥𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | syl2anc 403 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: 2spim 10577 |
| Copyright terms: Public domain | W3C validator |