| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbval2v | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.) |
| Ref | Expression |
|---|---|
| cbval2v.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbval2v | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfv 1461 | . 2 ⊢ Ⅎ𝑤𝜑 | |
| 3 | nfv 1461 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 4 | nfv 1461 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 5 | cbval2v.1 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbval2 1837 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |