![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvcsb | GIF version |
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
cbvcsb.1 | ⊢ Ⅎ𝑦𝐶 |
cbvcsb.2 | ⊢ Ⅎ𝑥𝐷 |
cbvcsb.3 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvcsb | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsb.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
2 | 1 | nfcri 2213 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐶 |
3 | cbvcsb.2 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
4 | 3 | nfcri 2213 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐷 |
5 | cbvcsb.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
6 | 5 | eleq2d 2148 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
7 | 2, 4, 6 | cbvsbc 2842 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐷) |
8 | 7 | abbii 2194 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} |
9 | df-csb 2909 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} | |
10 | df-csb 2909 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐷 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} | |
11 | 8, 9, 10 | 3eqtr4i 2111 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 {cab 2067 Ⅎwnfc 2206 [wsbc 2815 ⦋csb 2908 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-sbc 2816 df-csb 2909 |
This theorem is referenced by: cbvcsbv 2913 |
Copyright terms: Public domain | W3C validator |