![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvex4v | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
cbvex4v.1 | ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) |
cbvex4v.2 | ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvex4v | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex4v.1 | . . . 4 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) | |
2 | 1 | 2exbidv 1789 | . . 3 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤𝜓)) |
3 | 2 | cbvex2v 1840 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑧∃𝑤𝜓) |
4 | cbvex4v.2 | . . . 4 ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) | |
5 | 4 | cbvex2v 1840 | . . 3 ⊢ (∃𝑧∃𝑤𝜓 ↔ ∃𝑓∃𝑔𝜒) |
6 | 5 | 2exbii 1537 | . 2 ⊢ (∃𝑣∃𝑢∃𝑧∃𝑤𝜓 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) |
7 | 3, 6 | bitri 182 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 df-nf 1390 |
This theorem is referenced by: enq0sym 6622 addnq0mo 6637 mulnq0mo 6638 addsrmo 6920 mulsrmo 6921 |
Copyright terms: Public domain | W3C validator |