| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvraldva2 | GIF version | ||
| Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| cbvraldva2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| cbvraldva2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvraldva2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 108 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
| 2 | cbvraldva2.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eleq12d 2149 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 4 | cbvraldva2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | imbi12d 232 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑦 ∈ 𝐵 → 𝜒))) |
| 6 | 5 | cbvaldva 1844 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜒))) |
| 7 | df-ral 2353 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 8 | df-ral 2353 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜒)) | |
| 9 | 6, 7, 8 | 3bitr4g 221 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 = wceq 1284 ∈ wcel 1433 ∀wral 2348 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-ral 2353 |
| This theorem is referenced by: cbvraldva 2583 acexmid 5531 tfrlem3ag 5947 tfrlem3a 5948 tfrlemi1 5969 |
| Copyright terms: Public domain | W3C validator |