ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralv2 GIF version

Theorem cbvralv2 2968
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvralv2.1 (𝑥 = 𝑦 → (𝜓𝜒))
cbvralv2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbvralv2 (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
Distinct variable groups:   𝑦,𝐴   𝜓,𝑦   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvralv2
StepHypRef Expression
1 nfcv 2219 . 2 𝑦𝐴
2 nfcv 2219 . 2 𝑥𝐵
3 nfv 1461 . 2 𝑦𝜓
4 nfv 1461 . 2 𝑥𝜒
5 cbvralv2.2 . 2 (𝑥 = 𝑦𝐴 = 𝐵)
6 cbvralv2.1 . 2 (𝑥 = 𝑦 → (𝜓𝜒))
71, 2, 3, 4, 5, 6cbvralcsf 2964 1 (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-sbc 2816  df-csb 2909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator