ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq12i GIF version

Theorem coeq12i 4517
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12i.1 𝐴 = 𝐵
coeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
coeq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem coeq12i
StepHypRef Expression
1 coeq12i.1 . . 3 𝐴 = 𝐵
21coeq1i 4513 . 2 (𝐴𝐶) = (𝐵𝐶)
3 coeq12i.2 . . 3 𝐶 = 𝐷
43coeq2i 4514 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2101 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1284  ccom 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-in 2979  df-ss 2986  df-br 3786  df-opab 3840  df-co 4372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator