ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiebg GIF version

Theorem csbiebg 2945
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
csbiebg.2 𝑥𝐶
Assertion
Ref Expression
csbiebg (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiebg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2090 . . . 4 (𝑎 = 𝐴 → (𝑥 = 𝑎𝑥 = 𝐴))
21imbi1d 229 . . 3 (𝑎 = 𝐴 → ((𝑥 = 𝑎𝐵 = 𝐶) ↔ (𝑥 = 𝐴𝐵 = 𝐶)))
32albidv 1745 . 2 (𝑎 = 𝐴 → (∀𝑥(𝑥 = 𝑎𝐵 = 𝐶) ↔ ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
4 csbeq1 2911 . . 3 (𝑎 = 𝐴𝑎 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
54eqeq1d 2089 . 2 (𝑎 = 𝐴 → (𝑎 / 𝑥𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
6 vex 2604 . . 3 𝑎 ∈ V
7 csbiebg.2 . . 3 𝑥𝐶
86, 7csbieb 2944 . 2 (∀𝑥(𝑥 = 𝑎𝐵 = 𝐶) ↔ 𝑎 / 𝑥𝐵 = 𝐶)
93, 5, 8vtoclbg 2659 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282   = wceq 1284  wcel 1433  wnfc 2206  csb 2908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-csb 2909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator