| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbnestg | GIF version | ||
| Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) |
| Ref | Expression |
|---|---|
| csbnestg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2219 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
| 2 | 1 | ax-gen 1378 | . 2 ⊢ ∀𝑦Ⅎ𝑥𝐶 |
| 3 | csbnestgf 2954 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) | |
| 4 | 2, 3 | mpan2 415 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 = wceq 1284 ∈ wcel 1433 Ⅎwnfc 2206 ⦋csb 2908 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 |
| This theorem is referenced by: csbco3g 2960 |
| Copyright terms: Public domain | W3C validator |