| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > datisi | GIF version | ||
| Description: "Datisi", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AII-3: MaP and MiS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| datisi.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
| datisi.min | ⊢ ∃𝑥(𝜑 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| datisi | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | datisi.min | . 2 ⊢ ∃𝑥(𝜑 ∧ 𝜒) | |
| 2 | simpr 108 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜒) | |
| 3 | datisi.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 4 | 3 | spi 1469 | . . . 4 ⊢ (𝜑 → 𝜓) |
| 5 | 4 | adantr 270 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 6 | 2, 5 | jca 300 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜒 ∧ 𝜓)) |
| 7 | 1, 6 | eximii 1533 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: ferison 2053 |
| Copyright terms: Public domain | W3C validator |