![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcbi | GIF version |
Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
Ref | Expression |
---|---|
dcbi | ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ↔ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcim 817 | . . 3 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 → 𝜓))) | |
2 | dcim 817 | . . . 4 ⊢ (DECID 𝜓 → (DECID 𝜑 → DECID (𝜓 → 𝜑))) | |
3 | 2 | com12 30 | . . 3 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜓 → 𝜑))) |
4 | dcan 875 | . . 3 ⊢ (DECID (𝜑 → 𝜓) → (DECID (𝜓 → 𝜑) → DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)))) | |
5 | 1, 3, 4 | syl6c 65 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)))) |
6 | dfbi2 380 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
7 | 6 | dcbii 780 | . 2 ⊢ (DECID (𝜑 ↔ 𝜓) ↔ DECID ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
8 | 5, 7 | syl6ibr 160 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ↔ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 DECID wdc 775 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
This theorem depends on definitions: df-bi 115 df-dc 776 |
This theorem is referenced by: xor3dc 1318 pm5.15dc 1320 bilukdc 1327 xordidc 1330 |
Copyright terms: Public domain | W3C validator |