| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbi | Unicode version | ||
| Description: An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
| Ref | Expression |
|---|---|
| dcbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcim 817 |
. . 3
| |
| 2 | dcim 817 |
. . . 4
| |
| 3 | 2 | com12 30 |
. . 3
|
| 4 | dcan 875 |
. . 3
| |
| 5 | 1, 3, 4 | syl6c 65 |
. 2
|
| 6 | dfbi2 380 |
. . 3
| |
| 7 | 6 | dcbii 780 |
. 2
|
| 8 | 5, 7 | syl6ibr 160 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: xor3dc 1318 pm5.15dc 1320 bilukdc 1327 xordidc 1330 |
| Copyright terms: Public domain | W3C validator |