| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcned | GIF version | ||
| Description: Decidable equality implies decidable negated equality. (Contributed by Jim Kingdon, 3-May-2020.) |
| Ref | Expression |
|---|---|
| dcned.eq | ⊢ (𝜑 → DECID 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| dcned | ⊢ (𝜑 → DECID 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcned.eq | . . 3 ⊢ (𝜑 → DECID 𝐴 = 𝐵) | |
| 2 | dcn 779 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → DECID ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → DECID ¬ 𝐴 = 𝐵) |
| 4 | df-ne 2246 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 5 | 4 | dcbii 780 | . 2 ⊢ (DECID 𝐴 ≠ 𝐵 ↔ DECID ¬ 𝐴 = 𝐵) |
| 6 | 3, 5 | sylibr 132 | 1 ⊢ (𝜑 → DECID 𝐴 ≠ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 DECID wdc 775 = wceq 1284 ≠ wne 2245 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-ne 2246 |
| This theorem is referenced by: nn0n0n1ge2b 8427 algcvgblem 10431 |
| Copyright terms: Public domain | W3C validator |