ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neqned GIF version

Theorem neqned 2252
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2266. One-way deduction form of df-ne 2246. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2295. (Revised by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
neqned.1 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
neqned (𝜑𝐴𝐵)

Proof of Theorem neqned
StepHypRef Expression
1 neqned.1 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
2 df-ne 2246 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2sylibr 132 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1284  wne 2245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-ne 2246
This theorem is referenced by:  neqne  2253  flqltnz  9289  bezoutlemle  10397  eucalgval2  10435  eucalglt  10439  lcmval  10445  lcmcllem  10449  isprm2  10499  sqne2sq  10555
  Copyright terms: Public domain W3C validator