| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedlemb | GIF version | ||
| Description: Lemma for iffalse 3359. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| dedlemb | ⊢ (¬ 𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 664 | . . 3 ⊢ ((𝜒 ∧ ¬ 𝜑) → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))) | |
| 2 | 1 | expcom 114 | . 2 ⊢ (¬ 𝜑 → (𝜒 → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) |
| 3 | pm2.21 579 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜒)) | |
| 4 | 3 | adantld 272 | . . 3 ⊢ (¬ 𝜑 → ((𝜓 ∧ 𝜑) → 𝜒)) |
| 5 | simpl 107 | . . . 4 ⊢ ((𝜒 ∧ ¬ 𝜑) → 𝜒) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (¬ 𝜑 → ((𝜒 ∧ ¬ 𝜑) → 𝜒)) |
| 7 | 4, 6 | jaod 669 | . 2 ⊢ (¬ 𝜑 → (((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)) → 𝜒)) |
| 8 | 2, 7 | impbid 127 | 1 ⊢ (¬ 𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: iffalse 3359 |
| Copyright terms: Public domain | W3C validator |