![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaod | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
Ref | Expression |
---|---|
jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
5 | 2, 4 | jaoi 668 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 661 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: mpjaod 670 jaao 671 orel2 677 pm2.621 698 mtord 729 jaodan 743 pm2.63 746 pm2.74 753 dedlema 910 dedlemb 911 oplem1 916 opthpr 3564 trsucss 4178 ordsucim 4244 onsucelsucr 4252 0elnn 4358 xpsspw 4468 relop 4504 fununi 4987 poxp 5873 nntri1 6097 nnsseleq 6102 nnmordi 6112 nnaordex 6123 nnm00 6125 swoord2 6159 nneneq 6343 elni2 6504 prubl 6676 distrlem4prl 6774 distrlem4pru 6775 ltxrlt 7178 recexre 7678 remulext1 7699 mulext1 7712 un0addcl 8321 un0mulcl 8322 elnnz 8361 zleloe 8398 zindd 8465 uzsplit 9109 fzm1 9117 expcl2lemap 9488 expnegzap 9510 expaddzap 9520 expmulzap 9522 nn0opthd 9649 facdiv 9665 facwordi 9667 bcpasc 9693 recvguniq 9881 absexpzap 9966 maxabslemval 10094 ordvdsmul 10236 gcdaddm 10375 lcmdvds 10461 dvdsprime 10504 prmdvdsexpr 10529 prmfac1 10531 bj-nntrans 10746 bj-nnelirr 10748 bj-findis 10774 |
Copyright terms: Public domain | W3C validator |