| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-cnv | GIF version | ||
| Description: Define the converse of a class. Definition 9.12 of [Quine] p. 64. The converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈ V and 𝐵 ∈ V then (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴), as proven in brcnv 4536 (see df-br 3786 and df-rel 4370 for more on relations). For example, ◡ { 〈 2 , 6 〉, 〈 3 , 9 〉 } = { 〈 6 , 2 〉, 〈 9 , 3 〉 } . We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. Many authors use the postfix superscript "to the minus one." "Converse" is Quine's terminology; some authors call it "inverse," especially when the argument is a function. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-cnv | ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | ccnv 4362 | . 2 class ◡𝐴 |
| 3 | vy | . . . . 5 setvar 𝑦 | |
| 4 | 3 | cv 1283 | . . . 4 class 𝑦 |
| 5 | vx | . . . . 5 setvar 𝑥 | |
| 6 | 5 | cv 1283 | . . . 4 class 𝑥 |
| 7 | 4, 6, 1 | wbr 3785 | . . 3 wff 𝑦𝐴𝑥 |
| 8 | 7, 5, 3 | copab 3838 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
| 9 | 2, 8 | wceq 1284 | 1 wff ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
| Colors of variables: wff set class |
| This definition is referenced by: cnvss 4526 elcnv 4530 nfcnv 4532 opelcnvg 4533 csbcnvg 4537 cnvco 4538 relcnv 4723 cnvi 4748 cnvun 4749 cnvin 4751 cnvcnv3 4790 |
| Copyright terms: Public domain | W3C validator |