ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnv GIF version

Theorem relcnv 4723
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
relcnv Rel 𝐴

Proof of Theorem relcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4371 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
21relopabi 4481 1 Rel 𝐴
Colors of variables: wff set class
Syntax hints:   class class class wbr 3785  ccnv 4362  Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371
This theorem is referenced by:  relbrcnvg  4724  cnvsym  4728  intasym  4729  asymref  4730  cnvopab  4746  cnv0  4747  cnvdif  4750  dfrel2  4791  cnvcnv  4793  cnvsn0  4809  cnvcnvsn  4817  resdm2  4831  coi2  4857  coires1  4858  cnvssrndm  4862  unidmrn  4870  cnvexg  4875  cnviinm  4879  funi  4952  funcnvsn  4965  funcnv2  4979  funcnveq  4982  fcnvres  5093  f1cnvcnv  5120  f1ompt  5341  fliftcnv  5455  cnvf1o  5866  reldmtpos  5891  dmtpos  5894  rntpos  5895  dftpos3  5900  dftpos4  5901  tpostpos  5902  tposf12  5907  ercnv  6150  relcnvfi  6391
  Copyright terms: Public domain W3C validator