![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcnv | GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4371 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabi 4481 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3785 ◡ccnv 4362 Rel wrel 4368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 |
This theorem is referenced by: relbrcnvg 4724 cnvsym 4728 intasym 4729 asymref 4730 cnvopab 4746 cnv0 4747 cnvdif 4750 dfrel2 4791 cnvcnv 4793 cnvsn0 4809 cnvcnvsn 4817 resdm2 4831 coi2 4857 coires1 4858 cnvssrndm 4862 unidmrn 4870 cnvexg 4875 cnviinm 4879 funi 4952 funcnvsn 4965 funcnv2 4979 funcnveq 4982 fcnvres 5093 f1cnvcnv 5120 f1ompt 5341 fliftcnv 5455 cnvf1o 5866 reldmtpos 5891 dmtpos 5894 rntpos 5895 dftpos3 5900 dftpos4 5901 tpostpos 5902 tposf12 5907 ercnv 6150 relcnvfi 6391 |
Copyright terms: Public domain | W3C validator |