Detailed syntax breakdown of Definition df-iexp
| Step | Hyp | Ref
| Expression |
| 1 | | cexp 9475 |
. 2
class
↑ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | cc 6979 |
. . 3
class
ℂ |
| 5 | | cz 8351 |
. . 3
class
ℤ |
| 6 | 3 | cv 1283 |
. . . . 5
class 𝑦 |
| 7 | | cc0 6981 |
. . . . 5
class
0 |
| 8 | 6, 7 | wceq 1284 |
. . . 4
wff 𝑦 = 0 |
| 9 | | c1 6982 |
. . . 4
class
1 |
| 10 | | clt 7153 |
. . . . . 6
class
< |
| 11 | 7, 6, 10 | wbr 3785 |
. . . . 5
wff 0 <
𝑦 |
| 12 | | cmul 6986 |
. . . . . . 7
class
· |
| 13 | | cn 8039 |
. . . . . . . 8
class
ℕ |
| 14 | 2 | cv 1283 |
. . . . . . . . 9
class 𝑥 |
| 15 | 14 | csn 3398 |
. . . . . . . 8
class {𝑥} |
| 16 | 13, 15 | cxp 4361 |
. . . . . . 7
class (ℕ
× {𝑥}) |
| 17 | 12, 4, 16, 9 | cseq 9431 |
. . . . . 6
class seq1(
· , (ℕ × {𝑥}), ℂ) |
| 18 | 6, 17 | cfv 4922 |
. . . . 5
class (seq1(
· , (ℕ × {𝑥}), ℂ)‘𝑦) |
| 19 | 6 | cneg 7280 |
. . . . . . 7
class -𝑦 |
| 20 | 19, 17 | cfv 4922 |
. . . . . 6
class (seq1(
· , (ℕ × {𝑥}), ℂ)‘-𝑦) |
| 21 | | cdiv 7760 |
. . . . . 6
class
/ |
| 22 | 9, 20, 21 | co 5532 |
. . . . 5
class (1 /
(seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦)) |
| 23 | 11, 18, 22 | cif 3351 |
. . . 4
class if(0 <
𝑦, (seq1( · ,
(ℕ × {𝑥}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦))) |
| 24 | 8, 9, 23 | cif 3351 |
. . 3
class if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ
× {𝑥}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦)))) |
| 25 | 2, 3, 4, 5, 24 | cmpt2 5534 |
. 2
class (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ
× {𝑥}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦))))) |
| 26 | 1, 25 | wceq 1284 |
1
wff ↑ =
(𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ
× {𝑥}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦))))) |