ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expival GIF version

Theorem expival 9478
Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
expival ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))))

Proof of Theorem expival
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3356 . . . . 5 (𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) = 1)
2 ax-1cn 7069 . . . . 5 1 ∈ ℂ
31, 2syl6eqel 2169 . . . 4 (𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ)
43a1i 9 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ))
5 elnnz 8361 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
6 elnnuz 8655 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
75, 6bitr3i 184 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ 𝑁 ∈ (ℤ‘1))
87biimpi 118 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 0 < 𝑁) → 𝑁 ∈ (ℤ‘1))
98adantll 459 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → 𝑁 ∈ (ℤ‘1))
10 cnex 7097 . . . . . . . . . . . 12 ℂ ∈ V
1110a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → ℂ ∈ V)
12 simpl 107 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
13 elnnuz 8655 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ ↔ 𝑧 ∈ (ℤ‘1))
14 fvconst2g 5396 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℕ) → ((ℕ × {𝐴})‘𝑧) = 𝐴)
1513, 14sylan2br 282 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑧) = 𝐴)
1615eleq1d 2147 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ (ℤ‘1)) → (((ℕ × {𝐴})‘𝑧) ∈ ℂ ↔ 𝐴 ∈ ℂ))
1712, 16mpbird 165 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ)
1817adantlr 460 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ)
1918adantlr 460 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) ∧ 𝑧 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ)
20 mulcl 7100 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
2120adantl 271 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
229, 11, 19, 21iseqcl 9443 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) ∈ ℂ)
23 iftrue 3356 . . . . . . . . . . . 12 (0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
2423eleq1d 2147 . . . . . . . . . . 11 (0 < 𝑁 → (if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) ∈ ℂ))
2524adantl 271 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → (if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) ∈ ℂ))
2622, 25mpbird 165 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ)
2726ex 113 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ))
2827adantr 270 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ))
29283adantl3 1096 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ))
30 simpll2 978 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℤ)
3130znegcld 8471 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℤ)
32 simpr 108 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 < 𝑁)
3330zred 8469 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℝ)
34 0red 7120 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 ∈ ℝ)
3533, 34lenltd 7227 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 ≤ 0 ↔ ¬ 0 < 𝑁))
3632, 35mpbird 165 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ≤ 0)
37 simplr 496 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 𝑁 = 0)
3837neneqad 2324 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ≠ 0)
3938necomd 2331 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 ≠ 𝑁)
40 0z 8362 . . . . . . . . . . . . . . . . 17 0 ∈ ℤ
41 zltlen 8426 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁)))
4240, 41mpan2 415 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁)))
43423ad2ant2 960 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁)))
4443ad2antrr 471 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁)))
4536, 39, 44mpbir2and 885 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 < 0)
4633lt0neg1d 7616 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁))
4745, 46mpbid 145 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 < -𝑁)
48 elnnz 8361 . . . . . . . . . . . 12 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
4931, 47, 48sylanbrc 408 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℕ)
50 elnnuz 8655 . . . . . . . . . . 11 (-𝑁 ∈ ℕ ↔ -𝑁 ∈ (ℤ‘1))
5149, 50sylib 120 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ (ℤ‘1))
5210a1i 9 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ℂ ∈ V)
53173ad2antl1 1100 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ 𝑧 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ)
5453adantlr 460 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ)
5554adantlr 460 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) ∧ 𝑧 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ)
5620adantl 271 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
5751, 52, 55, 56iseqcl 9443 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁) ∈ ℂ)
58 simpll1 977 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐴 ∈ ℂ)
59 expivallem 9477 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁) # 0)
60593com23 1144 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ ∧ 𝐴 # 0) → (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁) # 0)
61603expia 1140 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ) → (𝐴 # 0 → (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁) # 0))
6258, 49, 61syl2anc 403 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐴 # 0 → (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁) # 0))
6339neneqd 2266 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 = 𝑁)
64 ioran 701 . . . . . . . . . . . . 13 (¬ (0 < 𝑁 ∨ 0 = 𝑁) ↔ (¬ 0 < 𝑁 ∧ ¬ 0 = 𝑁))
6532, 63, 64sylanbrc 408 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ (0 < 𝑁 ∨ 0 = 𝑁))
66 zleloe 8398 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁)))
6740, 66mpan 414 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁)))
68673ad2ant2 960 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁)))
6968ad2antrr 471 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁)))
7065, 69mtbird 630 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 ≤ 𝑁)
7170pm2.21d 581 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (0 ≤ 𝑁 → (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁) # 0))
72 simpll3 979 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐴 # 0 ∨ 0 ≤ 𝑁))
7362, 71, 72mpjaod 670 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁) # 0)
7457, 73recclapd 7869 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)) ∈ ℂ)
75 iffalse 3359 . . . . . . . . . 10 (¬ 0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) = (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))
7675eleq1d 2147 . . . . . . . . 9 (¬ 0 < 𝑁 → (if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)) ∈ ℂ))
7776adantl 271 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)) ∈ ℂ))
7874, 77mpbird 165 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ)
7978ex 113 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (¬ 0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ))
80 zdclt 8425 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 0 < 𝑁)
8140, 80mpan 414 . . . . . . . . . 10 (𝑁 ∈ ℤ → DECID 0 < 𝑁)
82 df-dc 776 . . . . . . . . . 10 (DECID 0 < 𝑁 ↔ (0 < 𝑁 ∨ ¬ 0 < 𝑁))
8381, 82sylib 120 . . . . . . . . 9 (𝑁 ∈ ℤ → (0 < 𝑁 ∨ ¬ 0 < 𝑁))
8483adantl 271 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ∨ ¬ 0 < 𝑁))
8584adantr 270 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (0 < 𝑁 ∨ ¬ 0 < 𝑁))
86853adantl3 1096 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (0 < 𝑁 ∨ ¬ 0 < 𝑁))
8729, 79, 86mpjaod 670 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ)
88 iffalse 3359 . . . . . . 7 𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))))
8988eleq1d 2147 . . . . . 6 𝑁 = 0 → (if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ ↔ if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ))
9089adantl 271 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ ↔ if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ))
9187, 90mpbird 165 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ)
9291ex 113 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (¬ 𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ))
93 zdceq 8423 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
9440, 93mpan2 415 . . . . 5 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
95 df-dc 776 . . . . 5 (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ ¬ 𝑁 = 0))
9694, 95sylib 120 . . . 4 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
97963ad2ant2 960 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
984, 92, 97mpjaod 670 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ)
99 sneq 3409 . . . . . . . 8 (𝑥 = 𝐴 → {𝑥} = {𝐴})
10099xpeq2d 4387 . . . . . . 7 (𝑥 = 𝐴 → (ℕ × {𝑥}) = (ℕ × {𝐴}))
101 iseqeq3 9436 . . . . . . 7 ((ℕ × {𝑥}) = (ℕ × {𝐴}) → seq1( · , (ℕ × {𝑥}), ℂ) = seq1( · , (ℕ × {𝐴}), ℂ))
102100, 101syl 14 . . . . . 6 (𝑥 = 𝐴 → seq1( · , (ℕ × {𝑥}), ℂ) = seq1( · , (ℕ × {𝐴}), ℂ))
103102fveq1d 5200 . . . . 5 (𝑥 = 𝐴 → (seq1( · , (ℕ × {𝑥}), ℂ)‘𝑦) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦))
104102fveq1d 5200 . . . . . 6 (𝑥 = 𝐴 → (seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦) = (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦))
105104oveq2d 5548 . . . . 5 (𝑥 = 𝐴 → (1 / (seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦)))
106103, 105ifeq12d 3368 . . . 4 (𝑥 = 𝐴 → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}), ℂ)‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦))) = if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦))))
107106ifeq2d 3367 . . 3 (𝑥 = 𝐴 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}), ℂ)‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦)))) = if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦)))))
108 eqeq1 2087 . . . 4 (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0))
109 breq2 3789 . . . . 5 (𝑦 = 𝑁 → (0 < 𝑦 ↔ 0 < 𝑁))
110 fveq2 5198 . . . . 5 (𝑦 = 𝑁 → (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
111 negeq 7301 . . . . . . 7 (𝑦 = 𝑁 → -𝑦 = -𝑁)
112111fveq2d 5202 . . . . . 6 (𝑦 = 𝑁 → (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦) = (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))
113112oveq2d 5548 . . . . 5 (𝑦 = 𝑁 → (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))
114109, 110, 113ifbieq12d 3375 . . . 4 (𝑦 = 𝑁 → if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))))
115108, 114ifbieq2d 3373 . . 3 (𝑦 = 𝑁 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))))
116 df-iexp 9476 . . 3 ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}), ℂ)‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦)))))
117107, 115, 116ovmpt2g 5655 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))))
11898, 117syld3an3 1214 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  DECID wdc 775  w3a 919   = wceq 1284  wcel 1433  wne 2245  Vcvv 2601  ifcif 3351  {csn 3398   class class class wbr 3785   × cxp 4361  cfv 4922  (class class class)co 5532  cc 6979  0cc0 6981  1c1 6982   · cmul 6986   < clt 7153  cle 7154  -cneg 7280   # cap 7681   / cdiv 7760  cn 8039  cz 8351  cuz 8619  seqcseq 9431  cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  expinnval  9479  exp0  9480  expnegap0  9484
  Copyright terms: Public domain W3C validator