| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss2f | GIF version | ||
| Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
| dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| dfss2f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 2988 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) | |
| 2 | dfss2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2213 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 4 | dfss2f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2213 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | 3, 5 | nfim 1504 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) |
| 7 | nfv 1461 | . . 3 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
| 8 | eleq1 2141 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 9 | eleq1 2141 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
| 10 | 8, 9 | imbi12d 232 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
| 11 | 6, 7, 10 | cbval 1677 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 12 | 1, 11 | bitri 182 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 ∈ wcel 1433 Ⅎwnfc 2206 ⊆ wss 2973 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-in 2979 df-ss 2986 |
| This theorem is referenced by: dfss3f 2991 ssrd 3004 ss2ab 3062 |
| Copyright terms: Public domain | W3C validator |