ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difabs GIF version

Theorem difabs 3228
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
difabs ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)

Proof of Theorem difabs
StepHypRef Expression
1 difun1 3224 . 2 (𝐴 ∖ (𝐵𝐵)) = ((𝐴𝐵) ∖ 𝐵)
2 unidm 3115 . . 3 (𝐵𝐵) = 𝐵
32difeq2i 3087 . 2 (𝐴 ∖ (𝐵𝐵)) = (𝐴𝐵)
41, 3eqtr3i 2103 1 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1284  cdif 2970  cun 2971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator