| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimfALT2 | GIF version | ||
| Description: Proof of dvelimf 1932 using dveeq2 1736 (shown as the last hypothesis) instead of ax-12 1442. This shows that ax-12 1442 could be replaced by dveeq2 1736 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.) |
| Ref | Expression |
|---|---|
| dvelimfALT2.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| dvelimfALT2.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
| dvelimfALT2.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
| dvelimfALT2.4 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
| Ref | Expression |
|---|---|
| dvelimfALT2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1459 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | |
| 2 | hbn1 1582 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦) | |
| 3 | dvelimfALT2.4 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
| 4 | dvelimfALT2.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
| 6 | 2, 3, 5 | hbimd 1505 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑧 = 𝑦 → 𝜑) → ∀𝑥(𝑧 = 𝑦 → 𝜑))) |
| 7 | 1, 6 | hbald 1420 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑))) |
| 8 | dvelimfALT2.2 | . . 3 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 9 | dvelimfALT2.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 10 | 8, 9 | equsalh 1654 | . 2 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
| 11 | 10 | albii 1399 | . 2 ⊢ (∀𝑥∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ ∀𝑥𝜓) |
| 12 | 7, 10, 11 | 3imtr3g 202 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∀wal 1282 = wceq 1284 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |