![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elint | GIF version |
Description: Membership in class intersection. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
elint.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elint | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eleq1 2141 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | imbi2d 228 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥))) |
4 | 3 | albidv 1745 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥))) |
5 | df-int 3637 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥(𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥)} | |
6 | 1, 4, 5 | elab2 2741 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∩ cint 3636 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-int 3637 |
This theorem is referenced by: elint2 3643 elintab 3647 intss1 3651 intss 3657 intun 3667 intpr 3668 peano1 4335 |
Copyright terms: Public domain | W3C validator |