![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elintrabg | GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
elintrabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2141 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) | |
2 | eleq1 2141 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | imbi2d 228 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝐴 ∈ 𝑥))) |
4 | 3 | ralbidv 2368 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 (𝜑 → 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
5 | vex 2604 | . . 3 ⊢ 𝑦 ∈ V | |
6 | 5 | elintrab 3648 | . 2 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝑦 ∈ 𝑥)) |
7 | 1, 4, 6 | vtoclbg 2659 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∀wral 2348 {crab 2352 ∩ cint 3636 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-int 3637 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |