| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eq2tri | GIF version | ||
| Description: A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| eq2tr.1 | ⊢ (𝐴 = 𝐶 → 𝐷 = 𝐹) |
| eq2tr.2 | ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐺) |
| Ref | Expression |
|---|---|
| eq2tri | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐹) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 262 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐶)) | |
| 2 | eq2tr.1 | . . . 4 ⊢ (𝐴 = 𝐶 → 𝐷 = 𝐹) | |
| 3 | 2 | eqeq2d 2092 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 ↔ 𝐵 = 𝐹)) |
| 4 | 3 | pm5.32i 441 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐹)) |
| 5 | eq2tr.2 | . . . 4 ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐺) | |
| 6 | 5 | eqeq2d 2092 | . . 3 ⊢ (𝐵 = 𝐷 → (𝐴 = 𝐶 ↔ 𝐴 = 𝐺)) |
| 7 | 6 | pm5.32i 441 | . 2 ⊢ ((𝐵 = 𝐷 ∧ 𝐴 = 𝐶) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) |
| 8 | 1, 4, 7 | 3bitr3i 208 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐹) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 |
| This theorem is referenced by: xpassen 6327 |
| Copyright terms: Public domain | W3C validator |