| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equs4 | GIF version | ||
| Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) |
| Ref | Expression |
|---|---|
| equs4 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1626 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | 19.29 1551 | . . 3 ⊢ ((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥 𝑥 = 𝑦) → ∃𝑥((𝑥 = 𝑦 → 𝜑) ∧ 𝑥 = 𝑦)) | |
| 3 | 1, 2 | mpan2 415 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥((𝑥 = 𝑦 → 𝜑) ∧ 𝑥 = 𝑦)) |
| 4 | ancl 311 | . . . 4 ⊢ ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → (𝑥 = 𝑦 ∧ 𝜑))) | |
| 5 | 4 | imp 122 | . . 3 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ 𝑥 = 𝑦) → (𝑥 = 𝑦 ∧ 𝜑)) |
| 6 | 5 | eximi 1531 | . 2 ⊢ (∃𝑥((𝑥 = 𝑦 → 𝜑) ∧ 𝑥 = 𝑦) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 7 | 3, 6 | syl 14 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 = wceq 1284 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: sb2 1690 equs45f 1723 |
| Copyright terms: Public domain | W3C validator |