| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equs5 | GIF version | ||
| Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equs5 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbnae 1649 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦) | |
| 2 | hba1 1473 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 3 | ax11o 1743 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
| 4 | 3 | impd 251 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 5 | 1, 2, 4 | exlimdh 1527 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∀wal 1282 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sb3 1752 sb4 1753 |
| Copyright terms: Public domain | W3C validator |