| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equsb3lem | GIF version | ||
| Description: Lemma for equsb3 1866. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| equsb3lem | ⊢ ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1459 | . 2 ⊢ (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧) | |
| 2 | equequ1 1638 | . 2 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑧 ↔ 𝑥 = 𝑧)) | |
| 3 | 1, 2 | sbieh 1713 | 1 ⊢ ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 = wceq 1284 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: equsb3 1866 |
| Copyright terms: Public domain | W3C validator |