ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb3lem GIF version

Theorem equsb3lem 1865
Description: Lemma for equsb3 1866. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
equsb3lem ([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧)
Distinct variable groups:   𝑦,𝑧   𝑥,𝑦

Proof of Theorem equsb3lem
StepHypRef Expression
1 ax-17 1459 . 2 (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)
2 equequ1 1638 . 2 (𝑦 = 𝑥 → (𝑦 = 𝑧𝑥 = 𝑧))
31, 2sbieh 1713 1 ([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-sb 1686
This theorem is referenced by:  equsb3  1866
  Copyright terms: Public domain W3C validator