ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6139
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6129 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 954 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  cun 2971  wss 2973  ccnv 4362  dom cdm 4363  ccom 4367  Rel wrel 4368   Er wer 6126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105
This theorem depends on definitions:  df-bi 115  df-3an 921  df-er 6129
This theorem is referenced by:  ercl  6140  erref  6149  errn  6151  erssxp  6152  erexb  6154  ereldm  6172  uniqs2  6189  iinerm  6201  th3qlem1  6231  0nnq  6554  nnnq0lem1  6636  prsrlem1  6919  gt0srpr  6925  0nsr  6926
  Copyright terms: Public domain W3C validator