![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > erdm | GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6129 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 954 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∪ cun 2971 ⊆ wss 2973 ◡ccnv 4362 dom cdm 4363 ∘ ccom 4367 Rel wrel 4368 Er wer 6126 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-er 6129 |
This theorem is referenced by: ercl 6140 erref 6149 errn 6151 erssxp 6152 erexb 6154 ereldm 6172 uniqs2 6189 iinerm 6201 th3qlem1 6231 0nnq 6554 nnnq0lem1 6636 prsrlem1 6919 gt0srpr 6925 0nsr 6926 |
Copyright terms: Public domain | W3C validator |