| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniqs2 | GIF version | ||
| Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
| qsss.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniqs2 | ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsss.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | uniqs 6187 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| 4 | qsss.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
| 5 | erdm 6139 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
| 6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
| 7 | 6 | imaeq2d 4688 | . . . 4 ⊢ (𝜑 → (𝑅 “ dom 𝑅) = (𝑅 “ 𝐴)) |
| 8 | 3, 7 | eqtr4d 2116 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ dom 𝑅)) |
| 9 | imadmrn 4698 | . . 3 ⊢ (𝑅 “ dom 𝑅) = ran 𝑅 | |
| 10 | 8, 9 | syl6eq 2129 | . 2 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = ran 𝑅) |
| 11 | errn 6151 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
| 12 | 4, 11 | syl 14 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝐴) |
| 13 | 10, 12 | eqtrd 2113 | 1 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 ∪ cuni 3601 dom cdm 4363 ran crn 4364 “ cima 4366 Er wer 6126 / cqs 6128 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-er 6129 df-ec 6131 df-qs 6135 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |