![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eupickb | GIF version |
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
eupickb | ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupick 2020 | . . 3 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
2 | 1 | 3adant2 957 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
3 | 3simpc 937 | . . 3 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓))) | |
4 | pm3.22 261 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
5 | 4 | eximi 1531 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥(𝜓 ∧ 𝜑)) |
6 | 5 | anim2i 334 | . . 3 ⊢ ((∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜓 ∧ 𝜑))) |
7 | eupick 2020 | . . 3 ⊢ ((∃!𝑥𝜓 ∧ ∃𝑥(𝜓 ∧ 𝜑)) → (𝜓 → 𝜑)) | |
8 | 3, 6, 7 | 3syl 17 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜓 → 𝜑)) |
9 | 2, 8 | impbid 127 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 919 ∃wex 1421 ∃!weu 1941 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |