ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickb GIF version

Theorem eupickb 2022
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eupickb ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem eupickb
StepHypRef Expression
1 eupick 2020 . . 3 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
213adant2 957 . 2 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
3 3simpc 937 . . 3 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)))
4 pm3.22 261 . . . . 5 ((𝜑𝜓) → (𝜓𝜑))
54eximi 1531 . . . 4 (∃𝑥(𝜑𝜓) → ∃𝑥(𝜓𝜑))
65anim2i 334 . . 3 ((∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜓𝜑)))
7 eupick 2020 . . 3 ((∃!𝑥𝜓 ∧ ∃𝑥(𝜓𝜑)) → (𝜓𝜑))
83, 6, 73syl 17 . 2 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜓𝜑))
92, 8impbid 127 1 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wex 1421  ∃!weu 1941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-3an 921  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator