![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exintrbi | GIF version |
Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.) |
Ref | Expression |
---|---|
exintrbi | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 381 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | albii 1399 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ ∀𝑥(𝜑 ↔ (𝜑 ∧ 𝜓))) |
3 | exbi 1535 | . 2 ⊢ (∀𝑥(𝜑 ↔ (𝜑 ∧ 𝜓)) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) | |
4 | 2, 3 | sylbi 119 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: exintr 1565 |
Copyright terms: Public domain | W3C validator |