![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimdvv | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1740 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1740 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-5 1376 ax-gen 1378 ax-ie2 1423 ax-17 1459 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: euotd 4009 funopg 4954 th3qlem1 6231 fundmen 6309 addnq0mo 6637 mulnq0mo 6638 genprndl 6711 genprndu 6712 genpdisj 6713 mullocpr 6761 addsrmo 6920 mulsrmo 6921 |
Copyright terms: Public domain | W3C validator |