ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv GIF version

Theorem exlimdvv 1818
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdvv (𝜑 → (∃𝑥𝑦𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜒,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (𝜑 → (𝜓𝜒))
21exlimdv 1740 . 2 (𝜑 → (∃𝑦𝜓𝜒))
32exlimdv 1740 1 (𝜑 → (∃𝑥𝑦𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-5 1376  ax-gen 1378  ax-ie2 1423  ax-17 1459
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  euotd  4009  funopg  4954  th3qlem1  6231  fundmen  6309  addnq0mo  6637  mulnq0mo  6638  genprndl  6711  genprndu  6712  genpdisj  6713  mullocpr  6761  addsrmo  6920  mulsrmo  6921
  Copyright terms: Public domain W3C validator