ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsimpl GIF version

Theorem exsimpl 1548
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 107 . 2 ((𝜑𝜓) → 𝜑)
21eximi 1531 1 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  19.40  1562  euex  1971  moexexdc  2025  elex  2610  sbc5  2838  dmcoss  4619  fmptco  5351  brabvv  5571  brtpos2  5889
  Copyright terms: Public domain W3C validator