| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ferio | GIF version | ||
| Description: "Ferio" ("Ferioque"), one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜒 is 𝜑, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, EIO-1: MeP and SiM therefore SoP.) For example, given "No homework is fun" and "Some reading is homework", therefore "Some reading is not fun". This is essentially a logical axiom in Aristotelian logic. Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 24-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
| Ref | Expression |
|---|---|
| ferio.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
| ferio.min | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
| Ref | Expression |
|---|---|
| ferio | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ferio.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 2 | ferio.min | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜑) | |
| 3 | 1, 2 | darii 2041 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∀wal 1282 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |