| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freq1 | GIF version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| freq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frforeq1 4098 | . . 3 ⊢ (𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑠 ↔ FrFor 𝑆𝐴𝑠)) | |
| 2 | 1 | albidv 1745 | . 2 ⊢ (𝑅 = 𝑆 → (∀𝑠 FrFor 𝑅𝐴𝑠 ↔ ∀𝑠 FrFor 𝑆𝐴𝑠)) |
| 3 | df-frind 4087 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | |
| 4 | df-frind 4087 | . 2 ⊢ (𝑆 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑆𝐴𝑠) | |
| 5 | 2, 3, 4 | 3bitr4g 221 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 = wceq 1284 FrFor wfrfor 4082 Fr wfr 4083 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-ral 2353 df-br 3786 df-frfor 4086 df-frind 4087 |
| This theorem is referenced by: weeq1 4111 |
| Copyright terms: Public domain | W3C validator |