ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freq1 GIF version

Theorem freq1 4099
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
freq1 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))

Proof of Theorem freq1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 frforeq1 4098 . . 3 (𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑠 ↔ FrFor 𝑆𝐴𝑠))
21albidv 1745 . 2 (𝑅 = 𝑆 → (∀𝑠 FrFor 𝑅𝐴𝑠 ↔ ∀𝑠 FrFor 𝑆𝐴𝑠))
3 df-frind 4087 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
4 df-frind 4087 . 2 (𝑆 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑆𝐴𝑠)
52, 3, 43bitr4g 221 1 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282   = wceq 1284   FrFor wfrfor 4082   Fr wfr 4083
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-cleq 2074  df-clel 2077  df-ral 2353  df-br 3786  df-frfor 4086  df-frind 4087
This theorem is referenced by:  weeq1  4111
  Copyright terms: Public domain W3C validator