| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funforn | GIF version | ||
| Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 4951 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 2 | dffn4 5132 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
| 3 | 1, 2 | bitri 182 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 dom cdm 4363 ran crn 4364 Fun wfun 4916 Fn wfn 4917 –onto→wfo 4920 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-fn 4925 df-fo 4928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |