ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fo GIF version

Definition df-fo 4928
Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fo (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))

Detailed syntax breakdown of Definition df-fo
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3wfo 4920 . 2 wff 𝐹:𝐴onto𝐵
53, 1wfn 4917 . . 3 wff 𝐹 Fn 𝐴
63crn 4364 . . . 4 class ran 𝐹
76, 2wceq 1284 . . 3 wff ran 𝐹 = 𝐵
85, 7wa 102 . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)
94, 8wb 103 1 wff (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff set class
This definition is referenced by:  foeq1  5122  foeq2  5123  foeq3  5124  nffo  5125  fof  5126  forn  5129  dffo2  5130  dffn4  5132  fores  5135  dff1o2  5151  dff1o3  5152  foimacnv  5164  foun  5165  fconstfvm  5400  dff1o6  5436  fo1st  5804  fo2nd  5805  tposfo2  5905
  Copyright terms: Public domain W3C validator