![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-fo | GIF version |
Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 4920 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 4917 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 4364 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1284 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 102 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 103 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: foeq1 5122 foeq2 5123 foeq3 5124 nffo 5125 fof 5126 forn 5129 dffo2 5130 dffn4 5132 fores 5135 dff1o2 5151 dff1o3 5152 foimacnv 5164 foun 5165 fconstfvm 5400 dff1o6 5436 fo1st 5804 fo2nd 5805 tposfo2 5905 |
Copyright terms: Public domain | W3C validator |