| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbab | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| hbab.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| hbab | ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2068 | . 2 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 2 | hbab.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 2 | hbsb 1864 | . 2 ⊢ ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑) |
| 4 | 1, 3 | hbxfrbi 1401 | 1 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} → ∀𝑥 𝑧 ∈ {𝑦 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 ∈ wcel 1433 [wsb 1685 {cab 2067 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 |
| This theorem is referenced by: nfsab 2073 |
| Copyright terms: Public domain | W3C validator |