| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hband | GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder hban 1479. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| hband.1 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| hband.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| Ref | Expression |
|---|---|
| hband | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hband.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 2 | hband.2 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 3 | 1, 2 | anim12d 328 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (∀𝑥𝜓 ∧ ∀𝑥𝜒))) |
| 4 | 19.26 1410 | . 2 ⊢ (∀𝑥(𝜓 ∧ 𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) | |
| 5 | 3, 4 | syl6ibr 160 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |