![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim12d | GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
anim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
anim12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | anim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | idd 21 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → (𝜒 ∧ 𝜏))) | |
4 | 1, 2, 3 | syl2and 289 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: anim1d 329 anim2d 330 prth 336 im2anan9 562 anim12dan 564 3anim123d 1250 hband 1418 hbbid 1507 spsbim 1764 moim 2005 moimv 2007 2euswapdc 2032 rspcimedv 2703 soss 4069 trin2 4736 xp11m 4779 funss 4940 fun 5083 dff13 5428 f1eqcocnv 5451 isores3 5475 isosolem 5483 f1o2ndf1 5869 tposfn2 5904 tposf1o2 5908 nnaordex 6123 supmoti 6406 isotilem 6419 recexprlemss1l 6825 recexprlemss1u 6826 caucvgsrlemoffres 6976 nnindnn 7059 lemul12b 7939 lt2msq 7964 lbreu 8023 cju 8038 nnind 8055 uz11 8641 xrre2 8888 ico0 9270 ioc0 9271 expcan 9644 gcdaddm 10375 bezoutlemaz 10392 bezoutlembz 10393 isprm3 10500 |
Copyright terms: Public domain | W3C validator |