ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbs1f GIF version

Theorem hbs1f 1704
Description: If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
hbs1f.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbs1f ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem hbs1f
StepHypRef Expression
1 hbs1f.1 . . 3 (𝜑 → ∀𝑥𝜑)
21sbh 1699 . 2 ([𝑦 / 𝑥]𝜑𝜑)
32, 1hbxfrbi 1401 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1282  [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-i9 1463  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-sb 1686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator