![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbs1f | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
hbs1f.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbs1f | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1f.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | sbh 1699 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
3 | 2, 1 | hbxfrbi 1401 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1282 [wsb 1685 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 df-sb 1686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |