| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbsb2e | GIF version | ||
| Description: Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.) |
| Ref | Expression |
|---|---|
| hbsb2e | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4e 1726 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | |
| 2 | sb2 1690 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → [𝑦 / 𝑥]∃𝑦𝜑) | |
| 3 | 2 | a5i 1475 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) |
| 4 | 1, 3 | syl 14 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 ∃wex 1421 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-11 1437 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |