| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbi | GIF version | ||
| Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
| Ref | Expression |
|---|---|
| ifbi | ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi2 454 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 2 | id 19 | . . . . . 6 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 624 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | 3 | anbi2d 451 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → ((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓))) |
| 5 | 1, 4 | orbi12d 739 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓)))) |
| 6 | 5 | abbidv 2196 | . 2 ⊢ ((𝜑 ↔ 𝜓) → {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓))}) |
| 7 | df-if 3352 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 8 | df-if 3352 | . 2 ⊢ if(𝜓, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓))} | |
| 9 | 6, 7, 8 | 3eqtr4g 2138 | 1 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 = wceq 1284 ∈ wcel 1433 {cab 2067 ifcif 3351 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-if 3352 |
| This theorem is referenced by: ifbid 3370 ifbieq2i 3372 |
| Copyright terms: Public domain | W3C validator |