| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > im2anan9 | GIF version | ||
| Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
| Ref | Expression |
|---|---|
| im2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 270 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜒)) |
| 3 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
| 4 | 3 | adantl 271 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜏 → 𝜂)) |
| 5 | 2, 4 | anim12d 328 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: im2anan9r 563 trin 3885 xpss12 4463 f1oun 5166 poxp 5873 brecop 6219 enq0sym 6622 genpdisj 6713 |
| Copyright terms: Public domain | W3C validator |