| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imimorbdc | GIF version | ||
| Description: Simplify an implication between implications, for a decidable proposition. (Contributed by Jim Kingdon, 18-Mar-2018.) |
| Ref | Expression |
|---|---|
| imimorbdc | ⊢ (DECID 𝜓 → (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfor2dc 827 | . . 3 ⊢ (DECID 𝜓 → ((𝜓 ∨ 𝜒) ↔ ((𝜓 → 𝜒) → 𝜒))) | |
| 2 | 1 | imbi2d 228 | . 2 ⊢ (DECID 𝜓 → ((𝜑 → (𝜓 ∨ 𝜒)) ↔ (𝜑 → ((𝜓 → 𝜒) → 𝜒)))) |
| 3 | bi2.04 246 | . 2 ⊢ (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → ((𝜓 → 𝜒) → 𝜒))) | |
| 4 | 2, 3 | syl6rbbr 197 | 1 ⊢ (DECID 𝜓 → (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∨ wo 661 DECID wdc 775 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |